
 

 

  
Abstract—Exponentials sum model is an important model in time 

series analysis and has applications in modeling various physical 
phenomena of real life. The estimation of the parameters of the model 
is a necessary and fundamental task for the application of the model. In 
this paper, we propose a differential ant-stigmergy algorithm (DASA) 
based iterative procedure to estimate the parameters of the considered 
model where two different criterions which are least squares and least 
absolute errors are considered. The estimators of the parameters for the 
considered model by the two criterions are compared with the existing 
estimators by genetic algorithm based least squares (GA-LS). 
Simulation experiments and real data fitting are presented to inspect 
the performance of the proposed algorithm. It can be observed that 
better results can be obtained by DASA based LS (DASA-LS) than by 
GA-LS in terms of mean squares errors (MSEs) and robustness. 
Although a higher dimensional optimization is needed for DASA 
based least absolute errors (DASA-LAE) than that for the other two 
methods, DASA-LAE providers better results than DASA-LS in 
outliers condition. Finally, simulation results also show that DASA 
has better global searching ability than that for GA.  
 

Keywords—Differential ant-stigmergy algorithm, Least absolute 
errors estimation, Least square estimation , Sum of exponentials 
model.  

I. INTRODUCTION 
N this paper, we study the problem of the parameters 
estimation of the sum of the exponentials model as follows: 
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is a where { }( )y t  are observed data at time point 

1 2{ , , , }nt t t t∈   which can be equidistant or non-equidistant. 

1{ }p
k kα =  and 1{ }p

k kβ =  are unknown amplitude and frequency 
parameters and p  is the number of components in model (1) 
and is assumed to be known. The sequence of additive noise 
{ ( )}tε  is assumed to be a sequence of independent and 
identically distributed (i.i.d.) random variable with zero mean 
and finite variance 2σ . The focus of the paper is to estimate the 

parameters 1{ }p
k kα =  and 1{ }p

k kβ =  according to the given 

observations 1{ ( )}n
i iy t =  where n  is the size of the sample. 

Exponentials sum model has important and extensive 
applications in many practical problems such as compartmental 
modeling and tracer kinetics [1], transmission function analysis 
in radiative transmission research [2], gene expressions [3], 
fitting of dwell-time distributions [4] and modeling probability 
densities [5]. Other literatures related to this model are referred 
to [6]-[8] and the references therein. 

It is a fundamental problem for estimating the parameters of 
sum of exponentials model. There are many different ways of 
estimating parameters of sum of exponentials model. Among 
non-parametric methods, Prony algorithm is the first attempt to 
deal with the estimation of the parameters of exponentials sum 
model [9]. In Prony method, the solution of the exponentials 
sum model was interpreted as a solution to the homogeneous 
ordinary differential equation. The solution precision is reduced 
largely when the signal is imbedded in noise. The modification 
of Prony algorithm is referred to [10]-[11].  

It is known that least squares (LS) criterion can produce good 
estimators and have good statistical properties for this problem 
in white noise condition [12], however, the methods above are 
not directly to deal with the objective function of the LS. 
Moreover, it is also known to be numerically difficult to solve 
the LS estimators [12]. 

 In addition to LS, LAE is another widely used criteria in 
optimization such as compressed sensing [13], identification of 
isolated structural damage [14] and impedance inversion [15]. 
LAE is also known to produce better estimation than LS in the 
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outliers condition, however, the objective function of LAE is the 
absolute value function which brings the trouble for Newton 
based optimization algorithms and can not use the separation 
regression technique to reduce the optimization dimension. It is 
noted that multidimensional optimization is very complicated 
problem [16], which makes the optimization algorithms to 
search in a wider and more complex space. A lot of excellent 
optimization algorithm show bad performance as increasing of 
the variable dimension [16]. So LAE seems to be a numerically 
more difficult problem than LS. To the best of our knowledge, 
there are not relevant literatures discussing the optimization of 
exponentials sum model based on LAE. 

It is known that traditional optimization algorithms such as 
[17] applying standard least squares procedures often ended up 
with derivative and matrix related computational problems such 
as premature termination to the search for the minimum, 
unreliable covariance matrices for the estimates and failure to 
give adequate error indications. Several special purpose 
algorithms have been proposed [18]-[23] to overcome these 
problems. 

 Bionic optimization algorithm is a kind of excellent 
optimization algorithm which has very strong versatility and is 
not bound by specific practical problems and avoids many of the 
shortcomings mentioned above [24]-[31]. Genetic algorithm is 
one of intelligent optimization algorithms which was introduced 
to solve the parameter estimation of model (1) by [32]. This 
algorithm directly deals with the objective function by LS. 
However, large number of individuals in group, gene expression 
and transformation between the coding and decoding require 
large number of calculation cost. 

 Korošec designed the differential ant-stigmergy algorithm 
(DASA) which can efficiently solve high-dimensional, wide 
search range, nonlinear optimization problems [33] and hasn't 
been applied to model (1). Inspired by this algorithm, in this 
paper, we combine DASA with LS as well as LAE to estimate 
the parameters of model (1). 

 The paper is arranged as follows. First, the optimization 
method of DASA is introduced and the algorithm of DASA-LS 
and DASA-LAE are described in Section Ⅱ. In Section Ⅲ, 
simulation experiments are performed to verify the 
effectiveness of the proposed algorithm. An application of the 
proposed algorithm on real measured data is presented in 
Section Ⅳ. Finally, we conclude the paper in Section Ⅴ. 

II. PROPOSED ALGORITHM  

A. DASA 
The DASA is an ant-colony optimization based algorithm for 

numerical optimization capable of solving high-dimensional 
real-parameter optimization problems. In this section, we will 
use DASA-LS and DASA-LAE to estimate the parameters of 
the considered model (1).  

For a given objective function ( )f x  which is to be 

optimized with respect to T
1 2( , , , )Dx x x= x , the aim of 

DASA is to find a vector of parameter values 
* T

1 2( , , , )Dx x x= x  that minimizes ( )f x , i.e., 
* arg min ( )

DR
f

∈
=

x
x x                                                         (2) 

 Because DASA uses the idea of ant colony algorithm, the 
establishment of a graph and distribution, update of pheromone 
and selection of feasible solution elements are included. Next 
we will introduce concepts of difference, differential graph, and 
assignment of pheromones for the ultimate DASA.  

To solve this real-parameter optimization problem, a 
fine-grained discrete form of continuous domain is created. 
Using this form, we are able to represent the problem as a graph. 
In order to set up a graph, parameter difference is introduced in 
DASA which can become a vertex in the graph. Let ix  be the 
current value of the i-th parameter. According to its value range 
and the preset maximum precision of the parameter, a series of 
parameter differences can be produced and some of them can be 
used to update ix  in each iteration: 

i i ix x δ′ = +                                                                       (3) 

iδ  is a parameter difference and ix′  is the updated value of ix . 

iδ  has 2 1id +  possible values, where 

1i i id U L= − + , log (max( ) min( ))i b i iU x x= −   ,

log ( )i b iL ε=    and     is rounding down function. With 

the parameter iε , the maximum precision of parameter ix  is 

set and b  is the discrete base. 
Once we get parameter difference, a differential graph can be 

established as follows by considering all possible values of 

{ } 1

D
i i

δ
=

 (see Fig. 1). 

 
Fig. 1 A schematic representation of a differential graph 

   In Fig. 1, 2 1
, 1{ } id

i j jV +
=  denote the vertices of the graph relevant 

to the i-th parameter ix . The value for ,i jV  is j-th value of iδ . 
This graph is divided into D layers. Each vertex of upper layer is 
connected to all the vertices that belong to the next layer. DASA 
introduces m artificial ants and each ant randomly selects a 
vertex in each layer in turn from the first layer to the D-th layer. 
Let T

1 2( , , , )DV V V= V  be one path that an ant select, 
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parameter vector T
1 2( , , , )Dx x x= x can be updated 

according to V  and (3). 
   In addition to the above two operations, the assignment of 
pheromones on the vertices is indispensable. The deposition of 
pheromones to the vertices of the differential graph is made 
according to Cauchy distribution as follow 

12

( ) 1π
−

  − = +        

z lC z s
s

                                                 (4) 

where l  is the location offset and global locals s s= −  is the 
scale factor. For the initial pheromone distribution, let 

0, 1, 0global locall s s= = =  and each layer of parameter 
vertices is equidistantly arranged between z = [-4,4]. The 
minimum and maximum z values were chosen according to the 
behavior of the standard Cauchy distribution, where at -4 and 4, 
the probability is already close to zero, so choosing higher 
values would be useless. 

The implementation of DASA can be described as follows: 
Step 1. Set the number of ant m , the pheromone evaporation 

factor ρ , the global scale-increasing factor s+ , the global 

scale-decreasing factor s− , globals , locals , discrete base b  and 

maximum precision iε ( 1, 2, ,i D=  ). Construct the 
differential graph and deposit pheromones on all vertices 
according to (4).  

Step 2. Generate temporary solution tbestx  and calculate 
( )tbest tbesty f= x . Simultaneously, Let best tbest=x x  and 

( )best besty f= x . 
Step 3. Each ant begins to select path from the starting 

vertex which is in first layer with a corresponding probability 
2 1

, , ,1
prob( ) ( ) ( )id

i j i j k jk
V V Vτ τ+

=
= ∑  

where ,( )i jVτ  is the pheromone amount on the vertex ,i jV . 

Step 4. Get m  solutions based on the same tbestx  and m  
paths according to (3). Calculate the corresponding m  values 
of objective function. Let ( )cbest cbesty f= x  denotes the 
minimal value among all m values where 

cbest tbest cbest= +x x p  and cbestp  is the corresponding path 

from tbestx  to  cbestx  . If cbestx  is better than tbestx , then 
tbest cbest=x x . At the same time, (1 )global globals s s+= + , 

1
2local globals s=  and the pheromone amount is redistributed 

according to associated path cbestp  and renewing 

global locals s s= − . Furthermore, if the new tbestx  is better 

than the global best solution bestx , then best tbest=x x  and 
renewing besty accordingly. If m ants do not generate the better 

solution than tbestx , then (1 )global globals s s−= − , 

(1 )l lρ= −  and (1 )local locals sρ= − , so the pheromone 
amount on each vertex can be updated. 

Step 5. If the pre-set number of iterations is reached, the 
optimization procedure is terminated. Otherwise, the procedure 
is returned to step 3. 

Remark1: In step 1, 0l = , 1globals = ,  0locals =  and they 

are changed along with the iteration. ρ , b , iε  are kept 
constant throughout the iteration. 

Remark2: As we can see that the pheromone on each layer 
must be updated in Fig. 1. When cbestp  in step 4 is obtained, we 

find the location in [-4,4] of the first component of cbestp  
which is the value of   l  in (4) needed to update the first layer of 
pheromone. According to the same method, l  in (4) needed to 
update the rest layers of pheromone can be obtained. 

Remark3: When (4) is used to arrange pheromone on 
differential graph, the value of l  is different on different layer 
while the value of s  is the same for all layers. 

 

B. DASA-LS estimation of the parameters of sum of 
exponentials model 

In this section, we will use DASA-LS to estimate the 
parameters of the sum of exponentials model.  

It is known that once the parameters 1{ }β =
p

k k  are estimated, 
model (1) can be changed to a linear model of 1{ }α =

p
k k  which 

can be obtained by the linear regression technique [32]. 

Observe that under the assumption of additive noise, the LS 

estimators can be obtained by minimizing the residual sums of 

squares with respect toα  and β ,where 
T

1 2( , , , )pα α α= α and  T
1 2( , , , )pβ β β= β  

1

2

1
( , ) ( )

n
k

t p
t

k
t t k

R y t eβα
= =

 
= − 

 
∑ ∑α β                                 (5) 

For simplicity, (5) can be written in matrix notation as follows: 

( ) ( )T( , ) ( ) ( )R = − −α β β α β αY A Y A                               (6) 

where T
1 2( ( ), ( ), , ( ))ny t y t y t= Y  and ( )A β  is n p×  

matrix of the following form: 
11 1

1

( )

p

p nn

tt

tt

e e

e e

ββ

ββ

 
 

=  
 
 



 



A β                                                (7) 

Observe that for a fixed β , the LS estimator of α  is  

( ) 1T T( ) ( ) ( )
−

 =   A A A Yα β β β β                                    (8)  

Replacing α  in (6) with ( )α β , we obtain 

( )T( , ) ( )R Q= = − AY I P Yα β β                                            (9) 
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where 
1T T( ) ( ) ( ) ( )

−
 =  AP A A A Aβ β β β  is the 

projection matrix on the space spanned by the columns of 
( )A β . So the LS estimator of  ( , )α β  obtained by 

minimizing ( , )R α β  with respect to ,α β  is the same as 

first obtaining the LS estimator of β  by minimizing ( )Q β  

with respect to β and then obtaining the LS estimator of α  

according to the estimated β  in (8). 
Incorporating DASA in the proposed algorithm, the 

parameter vector to be optimized is β , i.e. =x β , D p= . 

The objective function f  is ( )Q β  in (9). Once the estimator 

of β  is obtained, estimator of α  can be obtained by (8).  
 

C. DASA-LAE estimation of the parameters of sum of 
exponentials model  

LAE is another rule of optimization which can be obtained by 
minimizing the absolute value distance between the observed 
data and model data with respect to α  and β  as follows: 

1 1
( , ) ( )

n
k

t p
t

k
t t k

L y t eβα
= =

= −∑ ∑α β                                   (10) 

Since the separation regression technique can not be used due 
to the absolute value used in (10), frequency and amplitude are 
needs to be estimated simultaneously. So LAE estimation is a 
higher dimensional optimization problem than LS estimation in 
(9). However, LAE produces smaller error than LS for the same 
estimates of ,α β , it seems to obtain better results for LAE 
than LS in the outliers condition. It is noted that Newton based 
optimization algorithms can not effectively solve this kind of 
problem as it is based on gradient and is easy to fall into local 
minima while operation of taking absolute value has nearly 
nothing effect for DASA. So we use DASA based LAE to obtain 
estimators of the frequencies and amplitudes of the considered 
model in this paper. 

As in section 2.2, DASA-LAE estimation can be obtained 
according to the similar steps as for DASA-LS. It is noted again 
that frequency and amplitude parameters are simultaneously 
estimated, which cause the algorithm to be a higher dimensional 
optimization than that in DASA-LS. So the parameter vector to 

be optimized is ( )TT T,α β  for DASA-LAE, i.e. 

( )TT T,=x α β , 2D p= . The objective function f  is 

( , )L α β  in (10).  

III. SIMULATION STUDIES  
In this section, we will present simulation results to assess the 

performance of the proposed algorithm, i.e. DASA-LS and 
DASA-LAE. Different levels of noise, different sizes of sample 
and outliers are considered in the experiments.  

The computer platform used to perform the experiments is 

based on Intel Core 2.67-GHz processor, 3.25 GB of RAM and 
the Microsoft Windows 7 Professional Operating System. All 
algorithms are implemented by Matlab R2009a. 

 

A. Performance of  DASA-LS for real compartment growth 
model  

To investigate the performance of DASA-LS for various 
noise levels and sample sizes, we consider the following growth 
model: 

1 2
1 2( ) ( )t ty t e e tβ βα α ε= + +                                         (11) 

where 1, ,t n=   and n  is the size of the sample. The real 

parameter values in model (11) are taken as 1 6α = − , 2 3α = , 

1 0.2320β = − , and 2 0.0119β = . ( )tε  is taken as 
independently and identically distributed (i.i.d) normal noise 
sequence. In order to consider the influence of the noise for the 
proposed algorithm, we consider different standard deviation 

' sσ  which are σ = 0.01, 0.05, and 0.1 respectively. 
   The procedure for finding the estimates of the frequency 
parameter vector β  and amplitude parameter vector α  is 
replicated 200 times. The experimental parameter settings for 
DASA-LS are presented in Table 1. We report the average 
estimates (AEs), the corresponding mean square errors (MSEs) 
and the average absolute percentage errors (AAPEs) in Table 2 
corresponding to different noise situations where different 
sample sizes are also considered which are 25, 50, 75, and 100. 
The results inside the parentheses and brackets in Table 2 are 
MSEs and AAPEs respectively. From Table 2, it can be 
observed that the performance of DASA-LS is quite satisfactory 
about AEs, MSEs, and AAPEs. General trends of the results of 
the estimates become better as the noise variance becomes 
smaller for given sample size. More specifically, the estimates 
of AEs approach the real values while MSEs and AAPEs 
becomes smaller with the decrease of noise variance for given 
sample sizes. 
Table 1. Parameter settings for DASA-LS and model (11) 

DASA parameters Values 
Number of ants 
Discrete bases 
Maximum precision 
Global scale-increasing factor 
Global scale-decreasing factor 
Evaporation factor 
Range of parameters    
Maximum number of iteration 

2 
2 
2-15 
0.02 
0.01 
0.2 

1 2[ 10,10], [ 10,10]β β∈ − ∈ −
 800 

 
The results of DASA-LS are also compared with the GA-LS 

algorithm in [32]. The comparison between DASA-LS and 
GA-LS for 1β , 2β , 1α , and 2α  are presented in Fig. 2 where 
σ = 0.1. From Fig. 2, it can be observe that the MSEs of 
DASA-LS are smaller than those of GA-LS. Meanwhile the 
results in Table 2 and Fig. 2 are obtained under the condition 
when the hunting zone of the parameters is [-10 10] for DASA 
and [-2 2] for GA, which indicates DASA has good global 
searching ability in a wider range than that for GA. Besides this, 
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the number of individuals in the population is different where 
250 individuals are needed in one generation in GA-LS while 
only 2 ants are needed in one generation in DASA-LS, which 
indicates the number of individual needed in one generation for 
DASA is less than that for GA. 

In order to further demonstrate the performance of 
DASA-LS, the condition of n = 75 and σ = 0.05 is 
investigated. Here the range of parameters β  are set in [-2 2]. 
The convergence process of objective function and the 
estimates of the parameters β  are reported in Fig. 3 and Fig. 4 
respectively. From Fig. 3 and Fig. 4, it is obvious that the AEs of  
the parameters approach the stable values which are very close 
to the corresponding true values as the value of the objective 
function continuously decreases and achieves stability. 

We also study the effect of population size with respect to 
stability of the algorithm and present the results in Fig. 5. It is 
observed from Fig. 5 that all of the objective function values go 
to stabilize as the iteration number increases for different 
population sizes where the iteration numbers are all less than 
200. Moreover the iteration number for stability of objective 
function value is different for different population sizes and the 
iteration number seems to decrease with the increase of the 
sample size. 
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Fig. 2. Comparison of DASA-LS with GA-LS 
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Fig. 3. Convergence graph of objective function for model (11) 

 
 
 
 
 
 
 

Table 2. The performance of DASA-LS for parameter estimates of 
α  and β  in model (11) 

 
σ  n  1 0.2320β = −  

1 6α = −  
2 0.0119β =  

1 3α =  

 
 
 
 
 
0.01 
 
 
 

25 
 
 
50 
 
 
75 
 
 
100 
 

-0.2319 
(2.38e-6) 
[0.52] 
-0.2320 
(7.61e-7) 
[0.30] 
-0.2319 
(5.28e-7) 
[0.24] 
-0.2319 
(5.16e-7) 
[0.24] 

-6.0025 
(2.71e-4) 
[0.22] 
-5.9999 
(1.45e-4) 
[0.15] 
-5.9996 
(1.70e-4) 
[0.17] 
-5.9988 
(1.44e-4) 
[0.16] 

0.0119 
(7.37e-8) 
[1.81] 
0.0119 
(1.56e-9) 
[0.26] 
0.0119 
(2.25e-10) 
[0.10] 
0.0119 
(8.79e-11) 
[0.06] 

3.0022 
(3.18e-4) 
[0.47] 
3.0000 
(1.96e-5) 
[0.11] 
3.0001 
(6.40e-6) 
[0.06] 
3.0000 
(4.61e-6) 
[0.05] 

 
 
 
 
 
0.05 
 
 
 

25 
 
 
50 
 
 
75 
 
 
100 
 

-0.2320 
(5.04e-5) 
[2.46] 
-0.2322 
(1.70e-5) 
[1.44] 
-0.2323 
(1.26e-5) 
[1.22] 
-0.2319 
(9.48e-6) 
[1.01] 

-6.0006 
(7.01e-3) 
[1.10] 
-6.0043 
(4.30e-3) 
[0.80] 
-6.0033 
(3.50e-3) 
[0.79] 
-5.9979 
(3.00e-3) 
[0.73] 

0.0119 
(1.47e-6) 
[8.04] 
0.0119 
(4.10e-8) 
[1.32] 
0.0119 
(5.02e-9) 
[0.47] 
0.0119 
(1.54e-9) 
 [0.27] 

3.0006 
(6.20e-3) 
[2.07] 
2.9988 
(5.10e-4) 
[0.57] 
3.0001 
(1.40e-4) 
[0.32] 
3.0004 
(7.75e-5) 
[0.23] 

 
 
 
 
 
0.1 
 

25 
 
 
50 
 
 
75 
 
 
100 
 

-0.2319 
(2.14e-4) 
[5.00] 
-0.2325 
(6.37e-5) 
[2.81] 
-0.2321 
(5.25e-5) 
[2.46] 
-0.2326 
(4.20e-5) 
[2.42 ] 

-6.0151 
(2.86e-2) 
[2.17] 
-6.0009 
(1.40e-2) 
[1.54] 
-6.0026 
(1.37e-2) 
[1.52] 
-5.9982 
(1.57e-2) 
[1.68] 

0.0118 
(6.57e-7) 
[17.00] 
0.0119 
(1.41e-7) 
[2.53] 
0.0119 
(1.99e-8) 
[0.95] 
0.0119 
(4.23e-9) 
[0.53] 

3.0130 
(2.97e-2) 
[4.56] 
3.0017 
(1.80e-3) 
[1.11] 
2.9999 
(5.65e-4) 
[0.64] 
3.0006 
(2.16e-4) 
[0.39] 
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Fig. 4. Convergence graph of the estimates of parameter 1β  and 

2β  for model (11) 
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Fig. 5. Convergence graph of the objective function for different 
population sizes for model (11) 
 

B. Performance of  DASA-LS for real compartment growth 
model and DASA-LS for real compartment growth model with 
outliers 
In order to further check the performance of DASA for 

outliers condition, we consider DASA-LS and DASA-LAE in 
model (11) where 10% observations which are modeled as 
outliers are randomly chosen to be added with noises from a 
Gaussian random variable having variance 4 while the other 
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90% observations are contaminated by Gaussian noise with 
variance 2σ . Since DASA-LAE needs multidimensional 
optimization which simultaneously solves the estimates of 
frequency and amplitude, much time is needed for DASA-LAE 
than for DASA-LS . We set the maximum number of iteration to 
be 4000. The other experimental parameter settings for 
DASA-LS and DASA-LAE are the same as in Table 1. We 
report the AEs, MSEs, and AAPEs of DASA-LAE over 200 
simulation runs in Table 3. 
Table 3. The performance of DASA-LAE algorithm for parameter 
estimates of α  and β  in outlier noise 

σ  n  1 0.2320β = −  
1 6α = −  

2 0.0119β =  
1 3α =  
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From Table 3, it can be observed that although the noise 

variance of outlier is much larger than the noise variance of 
other observations where the ratio of variance between outlier 
and other observations are 400,1600, and 40000 for the three 
noise conditions considered, the performance of the estimators 
are still very satisfactory. MSEs and AAPEs become small with 
the increase of sample sizes while decrease when the noise 
standard deviations decrease. Moreover, comparing Table 3 
with Table 2，it is observed that the estimates in each table are 
very close with each other , which indicates DASA-LAE is 
robust for outliers. 

In addition, we plot the MSEs of α  and β  for DASA-LS 
and DASA-LAE where n =75, σ =0.01 over 200 simulation 
runs in Fig. 6. From Fig. 6, it can be observed that the red lines 
which denote the estimates of DASA-LSE are below the 
corresponding blue lines which denote the estimates of 
DASA-LS. So the performances of DASA-LAE are superior to 
the results based on DASA-LS. 
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Fig. 6. Comparison of DASA-LAE and DASA-LS for 1β , 2β , 

1α  and 2α  

C. Performance of  GA-LS, DASA-LS, and DASA-LAE for 
real compartment decay model 
In this section, to further compare the performance of GA-LS, 

DASA-LS, and DASA-LAE, we consider a real compartment 
decay model which is another exponentials sum model as 
follows: 

1 2
0 1 2( ) ( )i it t

i iy t e e tβ βα α α ε= + + +                            (12) 

where , 1, ,i
it i nn= =   and n  is the size of the sample. 

The true parameter values in model (12) are as follows:  

0 0.5α = , 1 1.5α = − , 2 2α = , 1 7β = − , and 2 4β = − . 

The additive noise { }( )itε  is a sequence of i.i.d Gaussian 

random variables, i.e. 2( ) (0, )it Nε σ  where 2σ  is the 
noise variance. 

We estimate 1β , 2β , 0α , 1α , and 2α  by DASA-LS and 
DASA-LAE respectively. The experimental parameter settings 
are the same as in Table 1 except the maximum number of 
iteration being taken as 4000 for DASA-LS and 40000 for 
DASA-LAE. Since 5-dimention optimization is needed for 
DASA-LAE about 0 1 2 1 2( , , , , )α α α β β  simultaneously, the 
maximum number of iteration is taken larger than that in 
DASA-LS. 

 In order to check the performance of DASA, we consider 
σ = 0.001 and take different sample sizes as n = 50, 100, 150, 
200, 250, 300, 350, and 400. We report the MSEs of 1 2( , )β β  
of DASA-LS, DASA-LAE, and GA-LS over 200 independent 
runs in Fig. 7. 
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Fig. 7. Comparison of DASA-LAE, DASA-LS, and GA-LS 
 
From Fig. 7, it is observed that the estimates of DASA-LS are 

better than those for GA-LS and DASA-LAE while the 
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estimates of DASA-LAE are worse than those for the other two 
estimates of GA-LS and DASA-LS. 

In order to further study the performance of  DASA-LAE, we 
consider the case when n = 100 and σ = 0.001. The AEs of 

1β  and 2β  of DASA-LAE over 200 simulation runs are  
reported in Fig. 8. From Fig. 8, it is observed that although the 
MSEs of DASA-LAE are larger than those of another two 
methods in Fig. 7, the AEs of 1β  and 2β  are satisfactory and 
are very close to the true parameter values. 
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Fig. 8. The average estimates of 1β  and 2β  of  DASA-LAE 

IV. REAL LIFE DATA ANALYSIS 
To check the performance of DASA-LS and DASA-LAE for 

real life data, two sets of real life data are fitted using sum of 
exponentials model. 

The experimental parameters settings for the two real life 
analysis are presented in Table 4. 

 
Table 4. Experimental parameter settings for real life data in [32] 
DASA parameters Values 
The number of ant 
Discrete base 
Maximum precision 
Global scale-increasing factor 
Global scale-decreasing factor 
Evaporation factor 
Maximum number of iteration 

2 
2 
2-15 

0.02 
0.01 
0.2 
5000 

 
Table 5. Sulfisoxazole concentration versus time [32] 
Time(min) Sul(ug/ml)    Time (min) Sul (ug/ml) 

0.25 
0.5 

0.75 
1.00 
1.50 
2.00 

215.6                3.00 
189.2                4.00 
176.0                6.00 
162.8                12.00 
138.6                24.00 
121.0                48.00 

101.2 
88.0 
61.6.00 
22.00 
4.4 
0.1 

The first set of data was obtained in [34] as presented in Table 
5. It is on the metabolism of sulfisoxazole which was used in [8]. 

For this intravenous data, a 2-compartment model was 
proposed in [32]. The concrete form is: 

1 2
1 1 2( ) t tC t e eβ βα α= +                                                   (13) 

where 1 2 1 2( , , , )α α β β  is the parameter vector to be estimated 
and t  is the time. Sulfisoxazole concentration at the time t is 
predicted by 1( )C t . It is noted that the sampling interval is not 
equidistant. 

 

We take 1 2,α α  in [50 200] and 1 2,β β  in [-10 0] and use 
the DASA-LS and DASA-LAE to fit this set of data 
respectively. The fitted models through the DASA-LS and 
DASA-LAE are: 

1.306 0.1618
1 ( ) 81.242 162.5971t t

DASA LSC t e e− −
− = +        (14)                 

1.2744 0.1597
1 ( ) 84.5473 160.3874t t

DASA LAEC t e e− −
− = +           (15) 

The fitted model by the GA-LS in [32] is: 
1.31 0.16

1 ( ) 80.81 162.93t t
GA LSC t e e− −

− = +                            (16) 
The sum of square of errors between fitting data and real 

measured data of DASA-LS，DASA-LAE, and GA-LS are 
34.3765，36.2282, and 37.2066 respectively. It is obvious that 
the result of DASA-LS is best. We also illustrate the relation 
between fitted data and real observed data in Fig. 9. The 
residual between fitted data and real observed data is 
graphically shown in Fig. 10. From Fig. 9, it is observed that the 
estimated models by the proposed algorithm can fit the 
observed data very well. From Fig. 10, the estimated residual of 
DASA-LS is smallest as a whole while the estimated residual of 
DASA-LAE is smaller than that of GA-LS. 
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Fig. 9. Fit of the sulfisoxazole concentration data based on 

DASA-LS，DASA-LAE, and GA-LS. 
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Fig. 10. Residual plot corresponding to DASA-LS, DASA-LAE, and 
GA-LS fit of the sulfisoxazole data 

The second set of data is from [35] as reported in the 
following form ( , )tt y : 

(0; 0.844); (10; 0.908); (20; 0.932); (30; 0.936); (40; 0.925); 
(50; 0.908); (60; 0.881); (70; 0.850); (80; 0.818); (90; 0.784); 
(100; 0.751); (110; 0.718); (120; 0.685); (130; 0.658); (140; 
0.628); (150; 0.603); (160; 0.580); (170; 0.558); (180; 0.538); 
(190; 0.522); (200; 0.506); (210; 0.490); (220; 0.478); (230; 
0.467); (240; 0.457); (250; 0.448); (260; 0.438); (270; 0.431); 
(280; 0.424); (290; 0.420); (300; 0.414); (310; 0.411); (320; 
0.406). 

For this real life data, we use a 2-compartment model to fit the 
given data as in [32]: 
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1 2
2 ( ) t tC t Ae Be Cθ θ= + +                                              (17) 

where 1 2( , , , , )A B C θ θ  is the parameter vector to be 

estimated and t  is the time. The real life data at time t is 

predicted by 2 ( )C t . 

We take 1 2,θ θ  in [ 2,0]−  and , ,A B C  in [ 4, 4]− . The 

fitted models by the DASA-LS and DASA-LAE are: 
0.02212 0.01287

2 ( ) 0.3754 1.4654 1.9365t t
DASA LSC t e e− −

− = − +  

(18) 
0.02169 0.01318

2 ( ) 0.3770 1.6361 2.1032t t
DASA LAEC t e e− −

− = − +

(19) 
The fitted model by the GA-LS in [32] is: 

0.02213 0.0129
2 ( ) 0.3754 1.4615 1.9327t t

GA LSC t e e− −
− = − +  

(20) 
The MSEs between fitting data and real measured data is 

2.9865×10-9 by DASA-LS, however, this result is 8.51×10-9 by 
GA-LS. We also illustrate the relation between fitted data and 
real observed data in Fig. 11. The plot of residual between fitted 
data and real observed data is given in Fig. 12. 
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Fig. 11. Fit of the dataset of [35] based on DASA-LS,DASA-LAE, and 
GA-LS 
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Fig. 12. Residual plot of DASA-LS, DASA-LAE, and GA-LS for the 
dataset of [35] 

From Fig. 11 and Fig. 12, it can be observed that the fitting of 
DASA-LS is better than that of DASA-LAE and GA-LS. The 
fitting based on DASA-LAE is a little bit worse, however, its 
overall performance is satisfactory. The fitting data are very 
close to the true observations. The estimated residual based on 
DASA-LAE is of the same order of magnitude with that of the 
other two methods. 

V. CONCLUSIONS 
 
This paper proposed a DASA based procedure to estimate the 

parameters of sum of exponentials model. For the DASA based 
estimation, two estimation criterions which are least squares and 
least absolute errors are considered for white noise and outliers 
condition respectively. We compared the performance of 
estimators by DASA-LS and DASA-LAE with that of GA-LS 
through several simulation tests and real life data fitting. DASA 
is observed to be efficient in searching the optimal solutions 
with a very small number of ants and only two ants are used for 
the proposed algorithm. On the other hand, DASA can search 
the optimal solution in a larger range than GA while is robust for 
the initial value. Simulation studies show that DASA-LS based 
estimators have smaller MSEs than those by DASA-LAE and 
GA-LS in moderate additive noise condition. Moreover, 
although DASA-LAE needs a higher dimensional optimization 
than DASA-LA and GA-LS, it produces better results than 
DASA-LS in outliers condition which verified the effectiveness 
of DASA-LAE for outliers condition. Finally, analysis of real 
data show superiority of DASA-LS to GA-LS in terms of MSEs. 
The generated model based on DASA-LS can fit the measured 
data more accurate than GA-LS and DASA-LAE. 
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